U.S. Department of Energy
Office of Fossil Energy
Carbon Capture, Utilization, and Storage

Dani Petrucci
Division of CCS R&D
U.S. Department of Energy, Office of Clean Coal and Carbon Management
Algae Biomass Summit; October 1, 2014
IEA CCS Roadmap 2013: Key Technologies for Reducing Global CO₂ Emissions

This requires an “all of the above” strategy

Source: IEA Roadmap 2013.
Note: Numbers in brackets are shares in 2050. For example, 14% is the share of CCS in cumulative emission reductions through 2050, and 17% is the share of CCS in emission reductions in 2050, compared with the 6DS.
President’s Climate Action Plan: Three overarching themes

Mitigation (emissions reduction)
• ALL OF THE ABOVE
• Efficiency, Renewables, Nuclear, Gas
• Coal with CCS/CCUS

Adaptation and resilience
• Smart, reliable grid
• Key infrastructure investments

International Partnerships
• China and OECD
• Coordinated international efforts
Office of Fossil Energy

Office of Clean Coal and Carbon Management

Office of Oil and Gas

Strategic Petroleum Reserves

National Energy Technology Laboratory

(Not to scale)
Electric Utility Sector & EPA Regulations

<table>
<thead>
<tr>
<th>Issue</th>
<th>Federal Regulation/Compliance</th>
</tr>
</thead>
</table>
| **Air** | **SO\textsubscript{x} & NO\textsubscript{x} crossing state lines** | Cross-State Air Pollution Rule (CSAPR) finalized 7/7/2011; 12/30/2011, DC Circuit stay of CSAPR (CAIR in effect); 8/21/2012, DC Circuit decision vacating CSAPR; SCOTUS overturned, EPA Review Pending
Compliance: Unknown |
| | **Mercury and Air Toxics Standards (MATS) Rule for Electric Generation Units** finalized 12/16/2011
Compliance: ~2015 |
| **GHG emissions** | **GHG New Source Performance Standards (NSPS)** new rule proposed 9/20/2013
Existing GHG Regulation proposed rule delivered 6/2014; final rule expected 6/2015 (under Presidential Memorandum)
Compliance: Unknown |
| **Waste** | **Coal Combustion Residuals (CCR) Rule** proposed rule 6/10/2010; schedule for final rule expected 1/2014 (court memorandum)
Compliance: Unknown |
| **Water** | **Cooling Water Intake Structures – impact on aquatic life**
CWA §316(b) Rule proposed rule 4/20/2011; final rule delivered 5/2014 (settlement agreement)
Compliance: Within 8 Years |
| | **Surface water discharges; Surface impoundments**
Steam Electric Effluent Limitations Guidelines proposed rule expected 11/2012; final rule expected 5/22/2014 (settlement agreement)
Compliance: Unknown |

- Near-term (through 2015-2016) Compliance Horizon for EPA regulations may create potential localized reliability issues
- Local reliability issues can be managed with timely notice and coordination on retirement and retrofit decisions
- States and regions will play a valuable role in addressing EPA regulation impacts
- Non-transmission alternatives can help alleviate reliability impacts when/where available
- EPA regulations are only one aspect impacting the future of our electricity system
RD&D Investment Strategy

Approaches
- Technology Development
- Commercial Readiness
- Market Penetration

Programs

RESEARCH & DEVELOPMENT
- Core Coal and Power Systems R&D
- DOE – FE – NETL

TECHNOLOGY DEMONSTRATION
- FutureGen 2.0
- Clean Coal Power Initiative
- Industrial CCS
- DOE – FE – NETL

FINANCIAL INCENTIVES
- Tax Credits
- Loan Guarantees
- DOE – LGO – IRS
Carbon Capture, Utilization, and Storage

Terrestrial Capture
- CO₂ absorbed from air

Terrestrial Storage
- Trees, grasses, soils, algae

Utilization
- EOR
- Beneficial Reuse

Point Source Capture
- Power Plants
- Ethanol Plants
 - Cement
 - Steel
 - Refineries
- Natural Gas Processing

Geologic Storage
- Saline formations
- Depleted oil/gas
- Unmineable coal
- Other: basalts, shales

Supercritical CO₂
1/300 th of Atm. CO₂
Coal-Fired Power Plant

550 MW_net ≈ 18,400 TPD CO₂

-90% carbon capture
-Compress to 2200 psi
-Transport & store/utilize

Flue Gas
CO₂ 14.5 vol%
H₂O 8.7%
N₂ 74.1%
O₂ 2.5%

Post-combustion capture goes here
A technology pipeline for affordable CCS

We need more 2nd generation pilots!
Major CCS Demonstration Projects

Project Locations & Cost Share

- **FutureGen 2.0**
 - Large-scale Testing of Oxy-Combustion w/ CO₂ Capture and Sequestration in Saline Formation
 - Project: ~$1.65B – Total; ~$1.0B – DOE
 - SALINE – 1M MTPY 2017 start

- **Summit TX Clean Energy**
 - Commercial Demo of Advanced IGCC w/ Full Carbon Capture
 - ~$1.7B – Total, $450M – DOE
 - EOR – ~2.2M MTPY 2018 start

- **HECA**
 - Commercial Demo of Advanced IGCC w/ Full Carbon Capture
 - ~$4B – Total, $408M – DOE
 - EOR – ~2.6M MTPY 2019 start

- **Southern Company**
 - Kemper County IGCC Project
 - Transport Gasifier w/ Carbon Capture
 - ~$4.12B – Total, $270M – DOE
 - EOR – ~3.0M MTPY 2014 start

- **Air Products and Chemicals, Inc.**
 - CO₂ Capture from Steam Methane Reformers
 - EOR in Eastern TX Oilfields
 - $431M – Total, $284M – DOE
 - EOR – ~0.93M MTPY 2012 start

- **Archer Daniels Midland**
 - CO₂ Capture from Ethanol Plant
 - CO₂ Stored in Saline Reservoir
 - $208M – Total, $141M – DOE
 - SALINE – ~0.9M MTPY 2015 start

- **FutureGen 2.0**
 - Large-scale Testing of Oxy-Combustion w/ CO₂ Capture and Sequestration in Saline Formation
 - Project: ~$1.65B – Total; ~$1.0B – DOE
 - SALINE – 1M MTPY 2017 start
CO₂ Utilization

• Fossil Energy R&D Program supporting projects coupling CO₂ storage with Enhanced Oil Recovery (EOR)
 – “Value-added” proposition aimed at kick-starting CCS
• 5/7 major demonstration projects have an EOR component
• Small R&D program focused on CO₂ conversion
 – Mineralization, Chemicals Production, Biological capture (algae)
• Utilization approaches should:
 – Provide reasonable opportunities to reduce significant amounts of CO₂
 – Offset cost of CCS by providing value-added co-products
Benefits & Challenges of reusing CO$_2$

- **Improves Carbon Efficiency**
 - Utilize carbon twice
 - Significantly lower CO$_2$ emissions possible

- **In contrast to CCS:**
 - Minimizes primary energy penalty
 - Produces value-added products
 - Addresses mobile emissions
 - Provides revenue stream to offset the costs of CCS

- **Additional wedge for CO$_2$ emission reductions**
 - Can be a transitional technology for moving towards GHG emissions reductions and CCS
 - Large impact possible
 - Unexplored potential

- **Technologies unproven on large-scale**
 - Difficulty in integrating technologies with a full-scale power plant
 - Costly when scaled-up

- **Performance Uncertainty**
 - Existing technologies not good enough
 - Alternatives not well characterized

- **Non-Sustainable**
 - Carbon is not permanently stored

- **Could require a non-fossil energy source for CO$_2$ conversion**

- **Oversaturation of product markets due to large quantities of CO$_2$ which must be utilized**

- **CO$_2$ transportation issues**
Potential Algae Integration with CCS

- Pulverized Coal
 - Boiler Feed Water
 - NOx Control
 - Air Preheat
 - PM Control
 - Hg Control
 - Flue Gas
 - CO2 Capture System
 - N2 to Stack
 - Reduced quantities for transport and storage
 - Flue Gas
 - CO2 in Flue Gas
 - CO2 in Solution
 - G/L transfer
 - Algae Pond or PBR
 - L/L transfer
 - HCO3-
 - Algae Products
 - Make-Up Water containing nutrients
 - Waste Heat Recovery

- Bottom Ash
 - Boiler
 - Steam
 - Air

- Plant Wastewater
 - Feed Water
 - Steam
 - Boiler
 - Feed Water

- CO2 to Storage
Synergies with Existing CCUS R&D Program

- **Carbonic Anhydrase Development**
 - Akermin/Codexis, Novozymes
 - Accelerate CO\(_2\) hydration

- **CO\(_2\) Capture Solvent Development**
 - In particular, aqueous solvents such as carbonate/bicarbonate & amino acid salts (potential short-term storage & transport option)

- **Gas/Liquid Membrane Contactors**
 - GTI and others
 - Improved mass-transfer, as well as lower CO\(_2\) losses
 - CO\(_2\) enriched air

- **SLIP-STREAM TESTING ON COAL-DERIVED FLUE GAS**
 - National Carbon Capture Center (NCCC)

Novel solvents, sorbents, and membrane materials could increase productivity and lower cost of biological CO\(_2\) conversion technologies
Key Priorities

• Deliver large CCS projects to maximum scientific and technical benefit
• Provide key decision makers the technical and economic information needed for investment, regulation, and policy
• Support a diverse clean coal research program likely to bring to market large improvements in cost, efficiency, and performance
• Increase the pool of potentially viable technologies that can serve commercial and industrial needs
• Reduce the risk of technical failure for public investments
• Ensure excellence in program design and execution
• Find solutions to maximize carbon efficiency and offset costs of CCS
Acknowledgements

- Mike Matuszewski, NETL
- John Marano, JM Energy Consulting
- Erik Shuster, NETL

Thank You
Backup Slides
Carbon Capture Pathways

Pre-combustion capture pathway

Post-combustion capture pathway

Oxy-combustion capture pathway
Carbon Storage

Capture: Power plants and industrial sources
- Pre-combustion
- Post-combustion
- Oxyfired combustion

Storage: > 1km depth
- Porous & permeable units
- Large capacity
- Good seals and cap rock

Two main targets
- Saline formations (~2200 Gtons capacity in N. Am.)
- Enhanced oil recovery (~100 B bbls addl. recovery)
Regional Carbon Sequestration Partnerships

- Recognized as global leader and one of most ambitious CCS programs by IEAGHG Program
- Characterizing regional sources and sinks
- Valuable to process/development of scaling up CO₂ geologic storage projects
- Adding significantly to knowledge base of saline formations, depleted hydrocarbon, and their respective geologic storage
 - Detailed reservoir characterization, reservoir modeling, addressing risks and mitigation, major R&D investments in monitoring
- Key role in outreach and education on CCS to public, regulators, and stakeholders
- Initiating large scale CO₂ injection

Seven Regional Partnerships
400+ distinct organizations, 43 states, 4 Canadian Provinces

Phase I: Characterization Phase (2003-2005)
Phase II: Validation Phase (2005-2011)
Phase III: Development Phase (2008-2018+)
Brief history and roadmap for CCS

<table>
<thead>
<tr>
<th>Then</th>
<th>Now</th>
<th>Future (2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS Program Initiated (1997)</td>
<td>Progress to Date</td>
<td>Broad Commercial Deployment</td>
</tr>
</tbody>
</table>
| **CCS R&D** | • Niche commercial efforts
• 1930’s and 1970’s tech for capture
• Little known for storage | • Much knowledge gained
• Major tech development
• Tools being developed and tested | • “Commercial toolbox” developed
• Dramatic cost reductions
• 1000’s of sites worldwide |
| **Storage Infrastructure/Field Tests** | • Little known outside of oilfield services
• Sleipner project initiated | • Increased visibility;
• Knowledge gained and lessons learned
• 12 large projects world-wide | • Market frameworks in place
• Novel regulatory mechanisms
• Turnkey operation |