Introduction: As fossil fuels diminish at an alarming rate it is imperative that we find an alternative source of energy. Biofuel derived from algae is a promising renewable energy source with extremely high energy yields, fast generation times, small land requirements and potential carbon neutral footprint. But a main hindrance to its commercial realization is algal crops high nutrient demands. Coupling mass algal cultivation with a high nutrient waste stream could offer an ideal synergy supplying high, inexpensive nutrients to the crop while the algae remediate the wastewater through nutrient uptake (phycoremediation). Green algal species were cultured in wastewater from Bell’s brewery (Galesburg, MI) and we characterized their growth, physiology, overall lipid productivity, and their ability to remediate the effluent in terms of total nitrogen removal.

Total N and P From Bell’s MCR6 Tank

<table>
<thead>
<tr>
<th>Nitrogen Type</th>
<th>Average +/- Std. Error</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>247.79 +/- 28.45 mg/L</td>
<td>56.4-842 mg/L</td>
</tr>
<tr>
<td>Total P</td>
<td>148.73 +/- 7.89 mg/L</td>
<td>45.7-306 mg/L</td>
</tr>
</tbody>
</table>

How much total nitrogen can be removed from brewery wastewater with green algae and which species display the best overall lipid productivity?

Experimental Design
- 6 Species of Green Algae
- Cultured as monocultures and a collective polyculture in 80:20 BWW:H₂O at 29°C
- Light Level: Constant 200 μmol m⁻² s⁻¹
- Sampling for Total N, P, Lipids, and Growth Rates Every 4th Day
- Duration: 12 Days

Most Successful Treatment?
By comparing the total nitrogen and phosphorus removal rates of each monoculture and the collective polyculture we can establish:
- The most effective candidate(s) for treatment
- The superior lipid yielding culture
- Whether diversity from the polyculture was beneficial for nutrient removal rates and overall productivity

Acknowledgements: A huge thank you to Walker Modic and Keith Boneburg at Bell’s Brewery for allowing this collaboration and for collecting BWW samples. Deepest thanks to Pam Woodruff and Allys Hutchens for lab assistance. Special thank you to Christoph Benning and Eric Poliner.

Results
- Brewery wastewater is a harsh environment for phytoplankton to inhabit. Figure 2 shows the change in cell size in response to being cultivated in BWW compared to nutrient rich W/C medium used for lab cultivation.
- 7 of the 9 species significantly increased in cell biovolumes when cultured in BWW.
- *Ankistrodesmus* sp. (not pictured due scaling) exhibited the strongest response (p<.00001), at times forming swollen nodules (“baby bumps”).

Conclusions
- Some green microalgae significantly reduce Total N levels in 12 days, within EPA dischargeable levels
- High growth, total lipid production and total nitrogen removal rates were correlated
- In response to a harsh aquatic environment, most algal species significantly increased biodebues
- 21 algal species (10 Greens, 5 Diatoms, 5 Cyanobacteria, 1 Chrysophyte) were screened to measure growth, lipid production and nutrient removal rates, only 7 species showed positive growth
- High nutrient wastewater can be used as fertilizer to cultivate microalgae for bioproducts (biofuel, fertilizer, food, pharmaceuticals) and this work needs to continue.