Low Cost, High Volume Algal Production Leveraging Nutrient Recovery from Municipal Wastewater

Chad Miller, VP Technology and Operations
1. SDSD Vision
2. Clearas Company History and Execution
3. SDSD Case History
 a. Site Overview
 b. Wasatch Resource Recovery
 c. Nutrient Dilemma
4. Clearas / Aqua Engineering Solution
5. Biomass Recovery
 a. Material Characterization
 b. Market Development
6. Developing the Supply Chain
7. Closing Remarks
South Davis Sewer District Vision

Two plants servicing ~ 90k rate payers

Active member of consortium along Wasatch front that has successfully lobbied for liberal discharge limits

Fiscally conservative, but forward-thinking leadership
“We want South Davis to be the first agency in the world to send its rate payers a dividend check instead of a bill at the end of every month.”
Clearas Company History and Execution

C
P
N
PBR
Biofuel

$$$
Clearas Company History and Execution

2009

PBR

Biofuel

Recycle to Consumer

ABNR™

Nutrient Discharge

Wastewater Treatment

C P N

Recycle to Consumer

Nutrient Discharge

Wastewater Treatment

2009

PBR

Biofuel

C P N

Recycle to Consumer

Nutrient Discharge

Wastewater Treatment
Inland Empire Paper Company (left) and Fond du Lac, WI Wastewater Treatment (right)
Clearas Company History and Execution

• Dozens of successful municipal demonstrations

• Non-chemical solution to nutrient recovery problem

• Phosphorus consistently brought down to non-detect levels

• Multi-constituent mitigation

• Significant DO increase

• Capital recovery options
Case History – Site Overview

North Plant (7 MGD)*:

<table>
<thead>
<tr>
<th></th>
<th>Influent</th>
<th>2^0 Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>4.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Ortho-P</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>TKN</td>
<td>35.6</td>
<td>11.4</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>-</td>
<td>7.3</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>-</td>
<td>7.1</td>
</tr>
</tbody>
</table>

South Plant (4 MGD)*:

<table>
<thead>
<tr>
<th></th>
<th>Influent</th>
<th>2^0 Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>4.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Ortho-P</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>TKN</td>
<td>32.6</td>
<td>9.0</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>-</td>
<td>11.9</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>-</td>
<td>5.3</td>
</tr>
</tbody>
</table>

*2014 - 2016 annual averages, ppm
Case History – Wasatch Resource Recovery
Case History – *Nutrient Dilemma*

- Biogas upgrading process yields clean carbon dioxide (nominally 30-50%) and methane that is pipeline ready

- Digestate (liquid fraction) is rich in both ammonia and ortho-phosphate

- Traditional options for managing the latter nutrient load include struvite formation or a return stream to the headworks

- Plant expansion and struvite reactors require additional investment in capital equipment and O&M
ABNR™

1. MIX

2. RECOVER

3. SEPARATE

4. HARVEST

Return Algae

Sunlight

Permeate

CO₂ from
Scrubbers

Digestate

Secondary Effluent

Equalization Tank
Clearas / Aqua Engineering Solution

SDSD South Plant Site Plan
Secondary effluent, digestate and CO₂ are delivered to the mix well where they are blended with return activated algae (RAA).
• Secondary effluent, digestate and CO₂ are delivered to the mix well where they are blended with return activated algae (RAA).

• The algae, carbon and wastewater (mixed liquor) are then routed to the PBRs for the requisite retention time.
Secondary effluent, digestate and CO₂ are delivered to the mix well where they are blended with return activated algae (RAA).

The algae, carbon and wastewater (mixed liquor) are then routed to the PBRs for the requisite retention time.

The mix is then moved to a bank of separators for isolation of solids and clean permeate.
Secondary effluent, digestate and CO₂ are delivered to the mix well where they are blended with return activated algae (RAA).

The algae, carbon and wastewater (mixed liquor) are then routed to the PBRs for the requisite retention time.

The mix is then moved to a bank of separators for isolation of solids and clean permeate.

Waste is sent to harvest, RAA to the mix well and permeate to a local customer, equalization tank or discharge.
South Plant (4 MGD):

- 44,180 ft\(^2\) footprint (~1 acre)
- Significant reuse of existing infrastructure
- Routing of digestate from WWR to equalization tank (elevates TP to 3 ppm and NH\(_3\) to 20 ppm) reduces demand on primary and secondary processes
- Nominal TP reduction from 3.0 to 0.035 ppm
- Dry weight of biomass recovered ranges from 5,939 to 9,898 lbs (theoretical yield from 60 to 100% efficiency)
Biomass Recovery

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Normalized Conc., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td>51.5</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>29.3</td>
</tr>
<tr>
<td>Lipids</td>
<td>12.0</td>
</tr>
<tr>
<td>Ash</td>
<td>7.2</td>
</tr>
</tbody>
</table>

• C6 : C5 sugars > 9 : 1

• Bioaccumulation of metals shown to be negligible

• No coagulant or polymer utilized during harvest; results in low ash concentrations
Developing the Supply Chain