Pulsed Electric Field Application to Aquaculture: Predator Control and Product Extraction

Michael A. Kempkes
Dr. Ian Roth
Diversified Technologies, Inc.
Dr. Thomas A. Dempster
Dr. Henri Gerken
ASU / AzCATI

35 Wiggins Avenue, Bedford, MA USA 01730 • (781) 275-9444 • www.divtecs.com
Diversified Technologies, Inc.

- Founded 1987 by Dr. Marcel Gaudreau (MIT)
- Manufacturer of High Reliability, High Voltage Electronics
 - Military Radars
 - Particle Accelerators
 - Semiconductor Fabs
 - Pulsed Electric Field Systems
- Over 500 High Voltage Systems Operating Around the World
Pulsed Electric Field (PEF)

- Uses Short, High Voltage Pulses to Perforate Cell Membranes
 - ‘Electroporation’
 - Similar to Gene Therapy Processes, at Larger Scale
- Short = microseconds
- High Voltage = 1 – 50 kV/cm
- Instantaneous Penetration through Tissue
- Very Low Energy
SBIR Grant from USDA

- Assess PEF-Assisted Extraction For Multiple Algal Species
- Assess Predator Control Effectiveness
- Partnered with ASU / AzCATI
 - Phase I Through March 2017
 - Phase II Starts Late 2017

AzCATI
Arizona Center for Algae Technology and Innovation
Algal Product Extraction

• Conventional
 – Concentration
 – Drying
 – Solvent Mix
 • Hexane
 • Supercritical CO2
 – Solvent Evaporation / Recovery
• Drying is the Major Cost
 – 4.5 kWh/kg DM!

• Wet Extraction
 – Concentration
 – PEF
 – Solvent Mix (methanol, ethanol, etc.)
 – Solvent Evaporation / Recovery
• Eliminates Drying
 (Uses < 3% Energy)
• Comparable Yields Demonstrated

0.05 – 0.15 kWh/kg DM
Laboratory Scale PEF System at ASU

- Mono-Polar
- 10 kV, 100 A Pulses
- 5 kW Average Power
- ~ 25 liters/hr

5.4 kV (30 kV/cm, 10 µs)
Chlorella vulgaris

Post-PEF and Centrifuge
(0 - 39 kV/cm, 20 μs)
Visible Release > 10 kV/cm
CV Sytox® / Chlorophyll Staining

0 KV/cm Brightfield SYTOX Chlorophyll

35 KV/cm Brightfield SYTOX Chlorophyll
CV Nile Red Staining

- Intracellular Neutral Lipids (Gold Fluorescence) In Untreated *Chlorella vulgaris* Cells (Top)
- Absence Shown by Red In PEF Treated Cells (Bottom)
- No Post-PEF Processing Other Than Centrifugation
Porphyridium purpureum

Post-PEF and Centrifuge
(0 - 25 kV/cm, 20 μs)
Scendesmus acutus

No Visible Chlorophyll Release Even With Multiple Passes
Testing Shows Little Impact Until ~ 30 kV/cm
Initial Results

• 14 Strains Tested to Date
 – Most Freshwater (*Chlorella* spp. (4), *Scenedesmus* spp. (3), *Desmodesmus* sp.)
 – One Filamentous Green Algae
 – Brackish (Blue-Green (*Galdieria* sp.), Red Alga (*Porphyridium purpureum*), *Nannochloropsis oceanica*)
 – Seawater Still an Issue (High Conductivity)

• Range of Results
 – Extensive Chlorophyll Release (Varying Field Strengths)
 – Electroporation but no Chlorophyll Release

• Additional Strains Will Be Tested as Available
• Solvent Assistance to be Assessed in Next Campaign
Algae Cultivation

Raceways

• Inexpensive
• Subject to Contamination
• 10 – 30% of Biomass Lost to Predators

Photobioreactors

• Expensive
• Contained / Controlled
• Higher Yield
Algal Predators (sample)

Amoebae

Poteriochromononas

Rotifers
Modeled Pond Crash

No Control
Predators Grow Unchecked
Tipping Point Reached
Pond Crashes Rapidly

Predator Control
Small % of Predators Killed Per Time Period
Tipping Point Never Reached
Stable Growth
Initial Tests - *Poteriochromonas*

<table>
<thead>
<tr>
<th>Brightfield</th>
<th>SYTOX®</th>
<th>Chlorophyll</th>
<th>Merge</th>
<th>Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 kV/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 kV/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Poteriochromonas Are Destroyed at High Fields
- Algae (*Chlorella vulgaris*) Survive
- Waiting on Testing to See Viability at Lower Fields
Predator Control Cost

• 1 – 3 kV/cm Appears Feasible For Control

• No Impact on Algae Seen in Tests (Even at Higher Fields)
 – Demonstrated Effect on Rotifers, Amoebae, Protozoa
 – No Chemicals / Residuals

• Example: 500,000 Liter Raceway
 – 10 kl/hr Treated (2%, Two Day Cycle Time)
 – Similar to a Pool Filter
 – ~ $10 - $100 USD / week in Electricity Costs

• Very Low Cost Compared to Pond Crash

• Additional Investigation Underway
Additional Tests

• We are Looking for
 – Additional Strains / Predators of Interest for Assessment
 – Phase II SBIR Partners in 2017

• Testing Can be Covered under USDA SBIR

• Non-Disclosure for Proprietary Organisms

• Visit DTI in the Exhibit Hall (Booth 14) and AzCATI Tour
PEF Summary

- Applicable to Multiple Steps in the Algal Product Chain
- Enables Extraction of Intra-Cellular Materials
- Non-Chemical Predator Control
- Very Low Cost Compared to Alternatives*

* For Freshwater Algae, so far
Thank You

Diversified Technologies, Inc.
35 Wiggins Avenue
Bedford, MA 01730 USA
+1 781-275-9444
www.divtecs.com
kempkes@divtecs.com

This material is based in part upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2016-33610-25460