Effect of Produced Water Integration into Microalgae Cultivation

Brian McNeil, Jay Barlow, Eric Torres, Derek Hess, Ron Sims, Jason C. Quinn

Mechanical Engineering
Colorado State University
Acknowledgments

Support from:
• Katerine Napan, Ph.D.
• Ron Sims, Ph.D.
• Jason Peterson
• Lexi McNeil
Microalgal Biofuels

Large-scale algal growth system

Global lipid productivity model

Opportunities:
- Industrial flue gases
- Wastewater
- Oil & gas produced water
Flue Gas Integration

Nannochloropsis salina
with 14 heavy metals

Scenedesmus obliquus
with 10 heavy metals

Napan, et.al. 2015
Oil & Gas Produced Water

• Water produced as a byproduct of oil or gas
• Commonly associated with hydraulic fracturing
• Almost always unusable as drinking water
• Treatment of produced water is expensive
• Integration into algae cultivation may be a possible solution
• This experiment used produced water from the Uintah Basin to evaluate microalgae integration
Cultivation System

- Vertical photobioreactors
- *Nannochloropsis salina*
- Operated in triplicate

- High light intensity
- Temp maintained at 23°C +/- 0.5°C
- pH maintained at 7.0 +/- 1.0
Experimental Setup

Baseline
Produced Water

Tap Water

Dilution
0%
25%
50%
75%

Recycle
Week 1
Week 2
Baseline Results

![Graph showing the increase in algae (g/L) over time (days) with error bars for both control and produced samples.](image)
Baseline Results

![Graph showing algae growth over time with control and produced lines]

Algae (g/L) vs Time (days)

- Control
- Produced
Lipid Results

<table>
<thead>
<tr>
<th>Media</th>
<th>Lipid Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>30%</td>
</tr>
<tr>
<td>Produced Water</td>
<td>15%</td>
</tr>
</tbody>
</table>
Experimental Setup

Baseline
Produced Water

Tap Water

Dilution
0%
25%
50%
75%

Recycle
Week 1
Week 2
Dilution Results

![Graph showing algae concentration over time with different dilutions]
Dilution Results

![Graph representing dilution results over time.](image)
Dilution Results

![Graph showing dilution results over time with labels for avg con, avg 1/4, avg 1/2, and avg 3/4]
Dilution Results

![Graph showing dilution results]

- **Algae (g/L)** vs. **Time (days)**
- Lines represent dilution factors:
 - avg con
 - avg 1/4
 - avg 1/2
 - avg 3/4

The graph illustrates the growth of algae over time for different dilution factors.
Lipid Content

Produced Water Concentration

<table>
<thead>
<tr>
<th>Lipid Content</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produced Water Concentration</td>
<td>0%</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Lipid Productivity

![Lipid Productivity Graph]

- **Lipid Productivity (g/L/week)**
- **Produced Water Concentration (%)**

- The graph shows a decrease in lipid productivity as the produced water concentration increases.
- The productivity peaks around 25% concentration and drops significantly as the concentration increases to 100%.

18
Experimental Setup

Baseline
Produced Water

Tap Water

Dilution
0% 25%
50% 75%

Recycle
Week 1
Week 2
REPLACE
Control
½ Produced Water

![Graph showing algae growth over time.](image)

- **Y-axis**: Algae (g/L)
- **X-axis**: Time (days)

- **Line colors and labels**:
 - Blue: week 1
 - Green: week 2

The graph illustrates the increase in algae concentration over time for two weeks, with week 1 showing a steady increase in algae concentration compared to week 2.
½ Produced Water

![Graph showing algae growth over time for two weeks.](image)

- **Y-axis**: Algae (g/L)
- **X-axis**: Time (days)
- **Legend**:
 - Blue line: week 1
 - Green line: week 2
Recycle

Graph showing the growth of algae over time, with two lines representing different weeks. The x-axis represents time in days, ranging from 1 to 8, and the y-axis represents the concentration of algae in g/L, ranging from 0 to 7.
Week 1

![Graph showing algae growth over time with four different conditions: average control (avg cont), average half (avg 1/2), average recycle (avg recycle), and average replace (avg replace). The graph plots Algae (g/L) against Time (days) from 1 to 8 days.]
Week 1 Lipid Content

- Control
- 50% PW
- Recycle
- Replace
Week 2

Lipid Content

Control | 50% PW | Recycle | Replace
Lipid Productivity

- **Control**: 2.8 g/L/week
- **50% PW**: 1.5 g/L/week
- **Recycle**: 1.2 g/L/week
- **Replace**: 0.8 g/L/week
Conclusions

Produced water significantly reduces microalgae growth
Conclusions

Produced water significantly reduces microalgae growth

Dilution with clean water restores growth
Produced water significantly reduces microalgae growth

Dilution with clean water restores growth

Lipid productivity increases in 25% produced water media
Conclusions

Produced water significantly reduces microalgae growth

Dilution with clean water restores growth

Lipid productivity increases in 25% produced water media

Produced water recycle increases subsequent lipid productivity
Effect of Produced Water Integration into Microalgae Cultivation

Brian McNeil, Jay Barlow, Eric Torres, Derek Hess, Ron Sims, Jason C. Quinn

Mechanical Engineering
Colorado State University